Minimax Approximations Subject to a Constraint

By C. T. Fike and P. H. Sterbenz

Abstract

A class of approximation problems is considered in which a continuous, positive function $\varphi(x)$ is approximated by a rational function satisfying some identity. It is proved under certain hypotheses that there is a unique rational approximation satisfying the constraint and yielding minimax relative error and that the corresponding relativeerror function does not have an equal-ripple graph. This approximation is, moreover, just the rational approximation to $\varphi(x)$ yielding minimax logarithmic error. This approximation, in turn, is just a constant multiple of the rational approximation to $\varphi(x)$ yielding minimax relative error but not necessarily satisfying the constraint.

1. Introduction. Various authors have investigated approximation problems in which the approximation $f(x)$ is required to satisfy some functional constraint. For example, Cody and Ralston [1] investigated the problem of finding a rational function $f(x)$ with numerator and denominator of degree N such that $f(x)$ satisfies the constraint

$$
f(x)=1 / f(-x)
$$

and minimizes the maximum relative error

$$
\max _{\{-\alpha, \alpha\}}\left|\frac{f(x)-e^{x}}{e^{x}}\right| .
$$

In this paper, we consider a class of approximation problems including the CodyRalston problem and similar problems that have arisen in other contexts. We show that for a problem in this class there is a unique approximation optimal in the sense that it yields minimax relative error, and we characterize this solution.
2. Relative and Logarithmic Error. Suppose that we want to find a polynomial or rational approximation for a function $\varphi(x)$ on an interval $I: a \leqq x \leqq b$, where $\varphi(x)$ is continuous and does not vanish in I. Then, we may assume that $\varphi(x)$ is positive for x in I.

Let V be a set of admissible functions. Here V will be either the set of all polynomials of degree $\leqq M$ or else the set V will be the set of all rational functions $p(x) / q(x)$ where $p(x)$ and $q(x)$ are relatively prime polynomials of degree $\leqq M$ and $\leqq N$, respectively, and $q(x)$ does not vanish for x in I. We shall refer to such functions $p(x) / q(x)$ as (M, N) rational functions.

For $f(x)$ in V, we set

$$
R(x)=\frac{f(x)-\varphi(x)}{\varphi(x)}
$$

Received November 25, 1969, revised November 2, 1970.
AMS 1969 subject classifications. Primary 4115, 4117, 4140; Secondary 6520, 6525.
Key words and phrases. Rational approximation, polynomial approximation, best approximation, constrained approximation, exponential function, starting approximation for square root.

Copyright © 1971, American Mathematical Society
and let μ denote the maximum of $|R(x)|$ for x in I. There is a unique function $f^{*}(x)$ in V which minimizes μ for all $f(x)$ in V. We let μ^{*} denote the value of μ for $f^{*}(x)$.

Let W be the set of all $f(x)$ in V for which $f(x)>0$ for all x in I. Let c be the minimum of $\varphi(x)$ for x in I. Then the function $f(x)=c / 2$ is in W, and for this function we have $\mu<1$. But any function which is in $V-W$ will yield $\mu \geqq 1$, so $f^{*}(x)$ is in W.

For $f(x)$ in W, we may consider the logarithmic error

$$
\delta(x)=\log _{e} \frac{f(x)}{\varphi(x)}
$$

We shall use λ to designate the maximum of $|\delta(x)|$ for x in I. Thus, with any function $f(x)$, we associate values of λ and μ. Clearly,

$$
\begin{equation*}
R(x)=e^{\delta(x)}-1 \tag{1}
\end{equation*}
$$

Instead of trying to find $f^{*}(x)$, it is sometimes convenient to try to find a function $f(x)$ in W which minimizes λ.

In [2], we proved the following theorem for the special case in which $\varphi(x)=\sqrt{ } x$. However, the proof given there is valid for any positive continuous function $\varphi(x)$, so it will not be repeated here.

Theorem 1. There is a unique function $\bar{f}(x)$ in W which minimizes the maximum of $|\delta(x)|$ on I for all $f(x)$ in W. If $\bar{\lambda}$ is the value of λ for $\bar{f}(x)$, we have

$$
\bar{\lambda}=\operatorname{arctanh} \mu^{*}
$$

$\bar{f}(x)$ is characterized by the fact that it produces an equal-ripple $\delta(x)$, and it is related to $f^{*}(x)$ by

$$
\begin{aligned}
\bar{f}(x) & =f^{*}(x) /\left(1-\left(\mu^{*}\right)^{2}\right)^{1 / 2} \\
f^{*}(x) & =\bar{f}(x) / \cosh \bar{\lambda}
\end{aligned}
$$

3. Constraints. In addition to the two related problems of finding $f^{*}(x)$ and $\bar{f}(x)$, there are some cases in which it is desirable to consider a third problem in which $f(x)$ is required to satisfy an identity satisfied by $\varphi(x)$. Three examples are:
(1) Find the best (N, N) rational approximation $f(x)$ for e^{x} on $-\alpha \leqq x \leqq \alpha$ such that $f(-x)=1 / f(x)$.
(2) For $0<\alpha<1$, find the best (N, N) rational approximation $f(x)$ for $\sqrt{ } x$ on $\alpha \leqq x \leqq 1 / \alpha$ such that $f(1 / x)=1 / f(x)$.
(3) For $N>0$ and $0<\alpha<1$, find the best $(N+1, N)$ rational approximation $f(x)$ for $\sqrt{ } x$ on $\alpha \leqq x \leqq 1 / \alpha$ such that $x f(1 / x)=f(x)$.

In each case, by the best approximation, we mean the one which minimizes μ subject to the constraint. An approximation of the first type is found by Cody and Ralston in [1] and by Kahan in [3]. Maehly studied an approximation of the second type. See the appendix of [4]. In [4], Cody finds an approximation of the third type. These constraints often simplify the problem of finding the best approximation by reducing the number of coefficients.

In each case, we have a constraint C. Let U be the set of all functions $f(x)$ in V which satisfy the constraint C. We shall require that the set U have the following properties:
(a) $\bar{f}(x)$ is in U.
(b) If $f(x)$ is in $U \cap W$, then for any x in I there is a point y in I such that $\delta(y)=-\delta(x)$.
(c) For any $f(x)$ in $U-W$ there is a $g(x)$ in $U \cap W$ which has a smaller μ than $f(x)$ does.

We first show that for each of the three examples considered above, U satisfies these properties. That $\bar{f}(x)$ is in U follows from the uniqueness of $\bar{f}(x)$, since otherwise we would have another function in W with the same value of λ, namely $1 / f(-x)$ in (1), $f(1 / x)$ in (2), and $x f(1 / x)$ in (3). For property (b) of U, we use $y=-x$ in (1) and $y=1 / x$ in (2) and (3). For property (c) of U, we first observe that our definition of V implies that every function $f(x)$ in V is bounded on I. For examples (1) and (2), this implies that $f(x)$ cannot vanish in the interval I, so if $f(x)$ is in $U-W$, we take $g(x)=-f(x)$. In the third example, we may always take $g(x)=\epsilon+\epsilon x$, where ϵ is a small positive constant such that the maximum of $g(x)$ is less than the minimum of $\varphi(x)$ for x in I.

We now address the problem of finding $f(x)$ in U which minimizes μ. Because of property (c), we need consider only functions in $U \cap W$. But for any function $f(x)$ in $U \cap W$, we have, by (1), $e^{\lambda}-1 \geqq R(x) \geqq e^{-\lambda}-1$, and since $\delta(x)$ is continuous on I there is a point x in I with $|\delta(x)|=\lambda$. But by property (b), there is a point y in I with $\delta(y)=-\delta(x)$, so $R(x)$ assumes both the values $e^{\lambda}-1$ and $e^{-\lambda}-1$ in I. Then, for $f(x)$ we have

$$
\begin{equation*}
\mu=e^{\lambda}-1 \tag{2}
\end{equation*}
$$

Since $\bar{f}(x)$ minimizes λ for all $f(x)$ in W, we have $\lambda \geqq \bar{\lambda}$, and therefore (2) implies $\mu \geqq e^{\bar{\lambda}}-1$. By property (a), $\bar{f}(x)$ is in $U \cap W$. Then, using $\bar{\mu}$ to denote the value of μ for $\bar{f}(x)$, we have, from (2), $\bar{\mu}=e^{\bar{\lambda}}-1$. Then, $\bar{f}(x)$ minimizes μ for all $f(x)$ in U. If $g(x)$ is any function in U with

$$
\begin{equation*}
\mu=e^{\bar{\pi}}-1 \tag{3}
\end{equation*}
$$

then (2) and (3) imply that $\lambda=\bar{\lambda}$, so the uniqueness of the function minimizing the maximum of $|\delta(x)|$ implies that $g(x)=\bar{f}(x)$. We have proved:

Theorem 2. $\bar{f}(x)$ is the unique function in U which minimizes the maximum of $|R(x)|$ for all $f(x)$ in U. For $\bar{f}(x)$, we have

$$
e^{-\bar{\lambda}}-1 \leqq \bar{R}(x) \leqq e^{\bar{\lambda}}-1 \quad \text { and } \quad \bar{\mu}=e^{\bar{\lambda}}-1
$$

The relation between the solution $\bar{f}(x)$ of the constrained problem and the solution $f^{*}(x)$ of the unconstrained problem is given in Theorem 1.
4. Comments. Since $\bar{f}(x)$ produces an equal-ripple $\delta(x)$, it produces an $R(x)$ which has the correct number of alternating sign extrema but which is not equal-ripple because the maximum is larger than the absolute value of the minimum. Thus, with constraints of this sort, the best-fit problem has a solution which does not produce an equal-ripple error curve.

For the first example, approximating e^{x}, we would usually select V so that the approximation $f^{*}(x)$ is accurate to better than word length. Since

$$
\left(1-\left(\mu^{*}\right)^{2}\right)^{1 / 2} \approx 1-\frac{1}{2}\left(\mu^{*}\right)^{2}
$$

this means that $f^{*}(x)$ and $\bar{f}(x)$ agree to more than twice word length, and so do
$e^{\bar{\lambda}}-1$ and $\left|e^{-\bar{\lambda}}-1\right|$. Thus, we will be equally satisfied with either $f^{*}(x)$ or $\bar{f}(x)$. Since the constraint reduces the number of coefficients, it may be easier to consider the constrained problem.

For $\sqrt{ } x$, we usually look for a starting approximation, and then use Newton's method. In this case, $f^{*}(x)$ and $\bar{f}(x)$ may be noticeably different, since the approximation is not very accurate. But we showed in [2] that $\bar{f}(x)$ minimizes the maximum relative error after one or more iterations, so we would prefer to have $\bar{f}(x)$ instead of $f^{*}(x)$. Then the constraint may be used to simplify the computation as in [4].

IBM Systems Research Institute
New York, New York 10017

1. W. J. Cody \& Anthony Ralston, "A note on computing approximations to the exponential function," Comm. ACM, v. 10, 1967, pp. 53-55.
2. P. H. Sterbenz \& C. T. Fike, "Optimal starting approximations for Newton's method," Math. Comp., v. 23, 1969, pp. 313-318. MR 39 \#6511.
3. W. KAhAN, "Library tape functions EXP, TWOXP, and .XPXP.," Programmers' Reference Manual, University of Toronto, 1966. (Mimeographed.)
4. W. J. Cody, "Double-precision square root for the CDC-3600," Comm. ACM, v. 7, 1964, pp. 715-718.
